\qquad
Worksheet: 2.7 Rational Functions and Inequalities
Be able to do this without a calculator. Show your work.

1. $(35 \mathrm{pts})$ Let $=\frac{2 x^{2}-9 x-5}{x^{2}-2 x-15}$.
a. Find the domain.
b. Determine if the function is symmetric to the y-axis, the origin, or neither.
c. Find any vertical asymptotes.

Give their equation: $\mathrm{x}=$
d. Find any holes in the graph: (x, y)
e. Find the y-intercept, if it exists.
f. Find any x-intercepts.
g. Find the equation of the horizontal asymptote or slant (oblique) asymptote.
h. Sketch the graph.
2. $(35 \mathrm{pts})$ Let $y=\frac{x^{2}-9}{4 x^{2}-9}$.
a. Find the domain.
b. Determine if the function is symmetric to the y-axis, the origin, or neither.
c. Find any vertical asymptotes.

Give their equation: $\mathrm{x}=$
d. Find any holes in the graph: (x, y)
e. Find the y-intercept, if it exists.
f. Find any x-intercepts.
g. Find the equation of the horizontal asymptote or slant (oblique) asymptote.
h. Sketch the graph.
3. (10 pts) Find the equation of the horizontal or slant asymptote of the function

$$
y=\frac{4 x+3}{x^{2}-x-5}
$$

4. (10 pts) Find the equation of the horizontal or slant asymptote of the function

$$
y=\frac{2 x^{2}-6 x+3}{x-5}
$$

5. (10 pts.) Solve the inequality. Give the solution in interval notation.

$$
\frac{2 x-7}{4 x+1} \geq 0
$$

